Wärmeberechnung nach EN 61439

Für die Wahl der Komponenten ist es entscheidend, ob die Geräte offen, d. h. luftdurchlässig, oder geschlossen, d. h. luftundurchlässig, sind. Während die Wärme bei offenen Geräten über einen Luftstrom abgeleitet werden kann, ist es bei geschlossenen Geräten nur über die Gehäusewände oder mit Hilfe eines Wärmeüberträgers möglich. Ob ein Gerät offen oder geschlossen konzipiert wird, hängt in erster Linie von der verlangten Schutzart gemäß DIN EN 60 529: 2009-9 ab.

Wärmedurchgangskoeffizienten üblicher Schaltschrankwände

Α	Stahlblech lackiert: U=5,5 W/(m²*K)	5,50	W/m²*K		
В	Stahlblech rostfrei: U=4,5 W/(m²*K)	4,50	W/m²*K		
С	Aluminium: U=12,0 W/(m ² *K)	12,00	W/m²*K		
D	Aluminium doppelwandig: U=4,5 W/(m²*K)	4,50	W/m²*K		
Е	Polyester: U=3,5 W/(m ^{2*} K)	3,50	W/m²*K		
F	Edelstahl rostfrei: U=3,7 W/(m²*K)	3,70	W/m²*K		
С	K - Wärmedurchgangskoeffizient Schaltschrank	12.00	W/m²*K	12.00	W/m²*K

Formeln zur Berechnung der effektiven Schaltschrank-Oberfläche - (Gehäuseaufstellung nach IEC 890)

Α	Einzelgehäuse – allseitig freistehend	$A (m^2) = 1.8 \times H \times (B + H) + 1.4 \times B \times T$			7,488	m²	
В	Einzelgehäuse für Wandanbau	$A (m^2) = 1.4 \times B \times (H + T) + 1.8 \times T \times H$			6,528	m²	
С	Anfangs- oder Endgehäuse – freistehend	$A (m^2) = 1.4 \times T \times (H + B) + 1.8 \times B \times H$			7,008	m²	
D	Anfangs- oder Endgehäuse für Wandanbau	$A (m^2) = 1.4 \times H \times (B + T) + 1.4 \times B \times T$			6,048	m²	
E	Mittelgehäuse – freistehend	$A (m^2) = 1.8 \times B \times H + 1.4 \times B \times T + T \times H$			6,528	m²	
F	Mittelgehäuse für Wandanbau	$A (m^2) = 1.4 \times B \times (H + T) + T \times H$			5,568	m²	
Α	A - effektive Schaltschrank-Oberfläche - (nach IEC 890)	7	,49	m²	7,488	m²	

Schaltschrankmaße und Material

Н	Schaltschrank Höhe (mm)	2.000,00	mm	2,000	m
В	Schaltschrank Breite (mm)	1.200,00	mm	1,200	m
Т	Schaltschrank Tiefe (mm)	600,00	mm	0,600	m
	installierte Verlustleistung Qv	137,00	W	137,000	W
	Maximale Temperatur innerhalb des Schaltschranks Ti	50,00	C°	50,000	C°
	Maximale Temperatur außerhalb des Schaltschranks Ta	40.00	C°	40.000	C°

Hauptstromkreise

Anzahl der installierten Hauptstromkreise 10
Gleichzeitigkeitsfaktor 0,6

Berechnung zur Dimensionierung eines Kühlgerätes

Strahlungsleistung Qs über die Gehäuseoberfläche	Qs=k*A*(Ti-Ta)	898,560	W
Benötigte Kühlleistung	Qe=Qv-(Qs)	-761,560	W
Temperaturanstieg Td	$Td=Qv/(K^*A)$	1,525	C°
Endtemperatur ohne Kühlung Te	Te=Ta+Td	41,525	C°

wird automatisch ermittelt muss eingegeben werden wird errechnet